|
Papers
- -01 Breakthrough in Understanding Disease (New York Times)
"The findings, which are the fruit of an immense federal project involving 440 scientists from 32 laboratories around the world, will have immediate applications for understanding how alterations in the non-gene parts of DNA contribute to human diseases, which may in turn lead to new drugs. They can also help explain how the environment can affect disease risk. In the case of identical twins, small changes in environmental exposure can slightly alter gene switches, with the result that one twin gets a disease and the other does not."
"As scientists delved into the 'junk' — parts of the DNA that are not actual genes containing instructions for proteins — they discovered a complex system that controls genes. At least 80 percent of this DNA is active and needed. The result of the work is an annotated road map of much of this DNA, noting what it is doing and how. It includes the system of switches that, acting like dimmer switches for lights, control which genes are used in a cell and when they are used, and determine, for instance, whether a cell becomes a liver cell or a neuron."
"In one of the Nature papers, researchers link the gene switches to a range of human diseases — multiple sclerosis, lupus, rheumatoid arthritis, Crohn’s disease, celiac disease — and even to traits like height. In large studies over the past decade, scientists found that minor changes in human DNA sequences increase the risk that a person will get those diseases. But those changes were in the junk, now often referred to as the dark matter — they were not changes in genes — and their significance was not clear. The new analysis reveals that a great many of those changes alter gene switches and are highly significant."
" 'Most of the changes that affect disease don’t lie in the genes themselves; they lie in the switches,' said Michael Snyder, a Stanford University researcher for the project, called Encode, for Encyclopedia of DNA Elements." 09-12
- Genetic Sequencing and Treatment for Cancer (New York Times)
"Scientists had compared the entire genetic sequences of the tumor cells invading her body with those in her healthy cells, searching for mutated tumor genes that could be thwarted by drugs approved for other cancers or even other diseases. That had led them to give her an expensive drug approved just a month earlier for melanoma patients. It had never been given to anyone with a blood cell cancer like hers. In theory, the drug should have killed her. Instead, it seemed to have halted or even reversed her cancer."
"But would it last? And what would it mean if it did not?" 07-12
|